The life cycle of phonological processes and rule scattering

Ricardo Bermúdez-Otero
(University of Manchester)

Session ❻ (History 1)
in Alternation types: computation, storage, history
Brugmann Fellow course, IGRA, Leipzig, July 2019

<table>
<thead>
<tr>
<th>§1</th>
<th>This session surveys the life cycle of phonological processes, showing that, in their diachronic evolution, sound patterns typically follow a unidirectional trajectory of change consisting of the following stages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>phonologization a mechanical phonetic effect is reanalysed as a cognitively controlled, language-specific, gradient process of phonetic implementation;</td>
</tr>
<tr>
<td>(ii)</td>
<td>stabilization this gradient process of phonetic implementation is reanalysed as a categorical phonological rule applying across the board at the phrase level;</td>
</tr>
<tr>
<td>(iii)</td>
<td>domain narrowing the phonological process thus born climbs from the phrase level to the word level, and thence to the stem level, as phonological properties generated in the output of a stratum S are reanalysed as already present in the input to S;</td>
</tr>
<tr>
<td>(iv)</td>
<td>morphologization or lexicalization finally, the phonological process ceases to operate, replaced either by a morphological rule of exponence or by a residue of listed allomorphy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§2</th>
<th>Associated with this life cycle are two other diachronic phenomena of considerable importance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>rule generalization the scalar nature of the phonetic precursors of sound patterns may cause a series of related successive innovations, each giving rise to a more general version of the same phonological process;</td>
</tr>
<tr>
<td>(ii)</td>
<td>rule scattering the older (‘lower’) versions of a sound pattern often persist diachronically and coexist in the grammar with the newer (‘higher’) versions created by the life cycle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§3</th>
<th>The life cycle of phonological processes, with its associated phenomena, is crucial to the theory of phonological alternation presented in this course (§1§6, §35§38) for several reasons:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>the life cycle provides empirical support for a stratal-cyclic architecture of phonology (§76), since the latter obviously lays down the track for the former;</td>
</tr>
<tr>
<td>(ii)</td>
<td>an understanding of rule scattering enables us to dispose of several putative counterinstances to modularity (§30, §19), insofar as different synchronically copresent avatars of the same sound pattern are sensitive to different factors active in different components of the grammar;</td>
</tr>
<tr>
<td>(iii)</td>
<td>understanding the mechanisms causing domain narrowing is crucial to the as yet incomplete task of explaining the historical genesis of stratal splits in morphophonological systems (§35§37, §38) and mapping the diachronic life cycle of affixes (§38).</td>
</tr>
</tbody>
</table>

THE LIFE CYCLE OF PHONOLOGICAL PROCESSES

<table>
<thead>
<tr>
<th>§4</th>
<th>The notion of the life cycle of phonological processes has a very long tradition:</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>it can be traced back at least to the dawn of Structuralism with Kruszewski (1881) and Baudouin de Courtenay (1895) (§4);</td>
</tr>
<tr>
<td>• recent contributions include</td>
<td></td>
</tr>
<tr>
<td>Bermúdez-Otero (2007, 2015),</td>
<td></td>
</tr>
<tr>
<td>Bermúdez-Otero & Trousdale (2012),</td>
<td></td>
</tr>
<tr>
<td>Ramsammy (2015, 2018),</td>
<td></td>
</tr>
<tr>
<td>Turton (2016, 2017),</td>
<td></td>
</tr>
<tr>
<td>Sen (2016),</td>
<td></td>
</tr>
<tr>
<td>Bailey (under review).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>§5</th>
<th>The life cycle in diagrammatic form (Bermúdez-Otero & Trousdale 2012: 700):</th>
</tr>
</thead>
</table>
Overall, innovation propagates ‘upwards’, as representations at lower levels furnish the data for the acquisition of representations at higher levels (Bermúdez-Otero 1999: 102, 2003: §4.1).

Phonologization

§6 In phonologization, as defined here, a mechanical (physically or physiologically determined) phonetic pattern is reanalysed as a cognitively controlled, language-specific, gradient process of phonetic implementation.

§7 **Gradient nasalization in American English**

(i) The phonetic implementation of a [VN] target requires the velum to be lowered at the same time as an oral occlusion is formed at the V-to-N transition.

However, the velum is a relatively slow articulator (Bell-Berti 1993: 66), and this physiological fact causes the timing of maximum velar opening to deviate probabilistically from the achievement of oral closure.

(ii) In American English /CVN/ words like *den*, however, nasal airflow begins systematically early in the vowel: the effect has been *phonologized* (Cohn 1990, 1993).

In this environment, however, nasalization remains **gradient**: the vowel is not specified as [+nasal] in the surface phonological representation (the output of the categorical phonology): crucially, the nasalization pattern of the vowel involves **phonetic interpolation**, resulting in a cline-like contour which contrasts with the nasality plateau in cases of categorical nasalization like *dent* (cf. §16 below).

§8 Phonologization manifests itself diachronically as **neogrammarian change**, i.e. phonetically gradient, lexically regular change:

![diagram](image)

§9 In line with the predictions of a **modular feedforward grammatical architecture** (Bermúdez-Otero 2007: 501–503, 2012: 45–49), new phonetic implementation rules are only sensitive to surface phonological information and are free from morphological and lexical effects.

For a review of the evidence from traditional historical linguistics, see Hill (2014).

§10 **Challenge 1: the role of lexical usage factors**

E.g. lexical token frequency (Bybee 2001): high-frequency words are relatively hypoarticulated

- shorter duration (Whalen 1991; Gahl 2008 on *time* vs *thyme*)
- more vowel centralization (Wright 2003, Dinkin 2008)
- more coarticulatory vowel nasalization (Zellou & Tamminga 2014)

Response: the effect of frequency is orthogonal and remains stable through change, giving rise to **constant rate effects** (Bermúdez-Otero et al. 2015; Kiparsky 2016: 482)

Observed for anticipatory vowel nasalization in American English (Zellou & Tamminga 2014):

- Mean vowel nasalization changes gradiently during the 20th century:
• And there is an effect of lexical frequency: frequent words show more nasalization.
• But this effect is constant across time: there is no significant interaction between speaker birthyear and lexical frequency.
• Hence, there is no need to record the outcome of gradient phonetic change in lexical representations; there is no continuous phonetic information in the lexicon.

§11 Challenge 2: putative morphologically conditioned phonetics

Bybee (2001), Steriade (2000), etc. See Bermúdez-Otero (2010: §8), Kawahara (2011: §2.3.3), Morrison (2018), and Strycharczuk (forthcoming) for surveys of the literature.

E.g. English /l/-darkening and /uː/-retraction (Strycharczuk & Scobbie 2016)
Some speakers show a gradient phonetic difference between
• monomorphemic
 hula
 [huː.lə]

and • word-level
 fool-ing
 [fuː.lɪŋ]

Response: a possible case of prosodic bounding (Bermúdez-Otero 2011: §4, §14iii, §15iv)
• stem level (stress-affecting affixation) ⇒ exhaustive footing
• word level (stress-neutral affixation) ⇒ stray syllables attached directly to \(\omega \)

\[\begin{array}{c}
\text{hula} \\
\Sigma' \\
\text{but} \\
\Sigma \\
\text{fuːl-} \\
\Sigma \\
\text{fool-ing} \\
\Sigma° \\
\end{array} \]

disyllabic foot

\[\begin{array}{c}
\text{disyllabic foot} \\
\text{but} \\
\text{fuːl} \\
\text{monosyllabic foot} \\
\end{array} \]

Other apparent cases of apparently morphologically conditioned phonetics involve rule scattering; see §32–§40 below.

§12 Challenge 3: putatively opaque phonetics (sensitive to nonsurface phonological information)

See Fruehwald (2013, 2016) on English /uː/-raising and /t/-flapping; §9ff.

Stabilization

§13 In stabilization, a gradient process of phonetic implementation is reanalysed as a categorical phonological rule applying across the board at the phrase level.

§14 Stabilization of voicing in word-final prevocalic /s/ in Quito Spanish

(Strycharczuk 2012: ch. 6; Strycharczuk et al 2014; §2ii)

(i) Stage 1: phonologization (gradient voicing)
 más alto /mas alto/ \[\text{[ma.}\ _\text{salto}] \text{ ‘taller’} \]

 \[\begin{array}{c}
 \text{fast speech} \\
 \text{glottal pulsing} \\
 \end{array} \]

 \[\begin{array}{c}
 \text{slow speech} \\
 \text{fricative constriction} \\
 \end{array} \]

(ii) Stage 2: stabilization (categorical voicing)
 más alto /mas alto/ \[\text{[ma.}_\text{aalto}] \text{ ‘taller’} \]

 \[\begin{array}{c}
 \text{fast speech} \\
 \text{passive voicing: tail duration remains the same} \\
 \end{array} \]

 \[\begin{array}{c}
 \text{slow speech} \\
 \text{lower voicing-to-constriction ratio in slow speech} \\
 \end{array} \]

§15 Being able to diagnose stabilization may be crucial to arguments about the architecture of phonology:

e.g. Quito Spanish /s/-voicing provides a counterexample to OO-correspondence, in that the voicing of word-final prevocalic /s/ in the onset is opaque and cannot be generated by transderivational identity with related surface forms (Bermúdez-Otero 2011: §6)

[\[NP _\text{[n mas]}\]]
[\[NP _\text{[n mas][a alto]}\]]
[\[NP _\text{[n mas][a noble]}\]]

\[\begin{array}{c}
\text{IO-FATH} \\
\text{IO-FATH} \\
\text{IO-FATH} \\
\end{array} \]

\[\begin{array}{c}
\text{OO-IDENT} \\
\text{OO-IDENT} \\
\text{OO-IDENT} \\
\end{array} \]

\[\begin{array}{c}
[x] \text{absent} \\
[x] \text{opaque} \\
[x] \text{transparent, but not in a legitimate base} \\
\end{array} \]

But the argument only goes through if /s/-voicing is categorical (cf. e.g. Colina 2009).

For the stratal analysis of this pattern, §9–§11.
§16 Categorical nasalization in American English

Unlike words like *den* (§7), American English /CVNT/ words like *dent* exhibit categorical nasalization (Cohn 1990, 1993):

- the vowel is specified as [+nasal] on the surface, and the underlying /N/ is deleted;
- phonetically, the vowel shows a plateau-like contour of nasal airflow.

§17 Categoricity via autosegmental delinking and spreading:

\[
\begin{array}{c|c|c|c|c|c|c}
\text{UR} & d & e & n & t & \text{delinking and spreading} & d & e & n & t \\
\hline
\text{SR} & d & e & n & t & \text{delinking and spreading} & d & e & n & t \\
\hline
\end{array}
\]

§18 The contrast between gradient nasalization in American English *den* and categorical nasalization in *dent* illustrates an important phenomenon in sound change, plausibly grounded in the scalar nature of its phonetic precursors:

Rule generalization (Bermúdez-Otero 2015: §22.3.1)

- Typically, phonologization and stabilization first take place in a relatively specific, highly phonetically favourable environment.
- Thereafter, further rounds of phonologization and stabilization may create new versions of the same process applying in more general, less phonetically favourable environments.
- The successive versions of the process (older relatively specific vs younger relatively general ones) may go through their life cycles separately.

See also Vennemann (1972: 186-187), Kiparsky (1988: §14.3.1), and §28-§29 below.

§19 Domain narrowing

Once stabilized as a phrase-level phonological process, the cyclic domain of a sound pattern may undergo narrowing:

- utterances > grammatical words > sublexical domains

Concomitantly, the process climbs up in the stratal hierarchy:

- phrase level > word level > stem level

§20 A textbook example of domain narrowing: the history of English postnasal plosive deletion

(Garrett & Blevins 2009: 527-528; Bermúdez-Otero 2011: §3; Bermúdez-Otero & Trousdale 2012: §2.3; Bailey 2018)

- Postnasal plosive deletion: \(g \rightarrow \emptyset / \eta / \eta ℓ \)
- N.B. the deletion of postnasal /d/ is opaque in the onset, i.e. when a vowel follows.

- Domain narrowing since Early Modern English:

\[
\begin{array}{c|c|c|c|c|c}
\text{Diachronic stage} & 0 & 1 & 2 & 3 \\
\hline
\text{elongate} & 99 & 99 & 99 & 99 \\
\text{prolong-er} & 99 & 99 & 99 & 99 \\
\text{prolong it} & 99 & 99 & 99 & 99 \\
\text{prolong} & 99 & 99 & 99 & 99 \\
\hline
\text{0} & \text{Early Modern English} & \text{deletion not yet stabilized} \\
1 & \text{Elphinston’s formal register} & \text{PL /}g/-deletion transparent \\
2 & \text{Elphinston’s colloquial register} & \text{WL /}g/-deletion overapplication in phrasal domains \\
3 & \text{Present-day English} & \text{SL /}g/-deletion overapplication in word and \text{phrase domains} \\
\end{array}
\]

§21 Recurrent input restructuring

\[
\begin{array}{c|c|c|c|c|c|c}
\text{level} & \text{deletion?} & \text{elongate} & \text{prolong-er} & \text{prolong it} & \text{prolong} \\
\hline
\text{a. Stage 0: Early Modern English} & & & & & \\
\text{SL} & \text{no} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} \\
\text{WL} & \text{no} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} \\
\text{PL} & \text{no} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} \\
\hline
\text{b. Stage 1: Elphinston’s formal register} & & & & & \\
\text{SL} & \text{no} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} \\
\text{WL} & \text{no} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} \\
\text{PL} & \text{yes} & \{[i.iŋ.g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\} & \{[p2.3.0g]ŋ\}
\end{array}
\]
c. Stage 2: Elphinston’s casual register

<table>
<thead>
<tr>
<th></th>
<th>SL</th>
<th>WL</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>[i-lhŋ.gt]</td>
<td>[i-lhŋ.gt]</td>
<td>[i-lhŋ.gt]</td>
</tr>
<tr>
<td>yes</td>
<td>[i-lhŋ.gt]</td>
<td>[i-lhŋ.gt]</td>
<td>[i-lhŋ.gt]</td>
</tr>
</tbody>
</table>

WL yes (vacuously) [i-lhŋ.gt] [i-lhŋ.gt] [i-lhŋ.gt]

§22 The role of alternant distribution in input restructuring

- In the conservative grammar (stage 1 in §20 and §21), the word *sing* was represented as */sVŋd/ in the input to the phrase-level phonology. Surface tokens lacking */d/ in preconsonantal and prepausal environments were derived by means of an unfaithful phrase-level mapping: see (a) below.
- Such tokens, however, occurred approximately three times more frequently than faithful prevocalic ones (Bybee 1998: 73). Learners who took them at face value replaced */sVŋd/ with */sVŋ/ in the phrase-level input: see (b) below.

(a)

(b)

§23 The role of the Anti-Alternation Bias

The quantitative distribution of alternants on the surface is not enough to explain domain narrowing.

- Crucially, the restructuring */Wl. sVŋ/ > */Wl. sVŋ/ gives rise to tokens of onset [ŋ] on the surface:
 - before input restructuring: */Wl. sVŋ/ + */Wl. n/ → */P. sVŋ.gt/
 - after input restructuring: */Wl. sVŋ/ + */Wl. n/ → */P. sVŋ.gt/
- Thus, domain narrowing is accompanied by the demotion of the markedness constraint *[ŋ] in the phrase-level phonology, even though this constraint is unviolated in the learner’s data.

Q. If, after pure phonotactic learning over surface forms, *[ŋ] is undominated in the phrase-level hierarchy, why does this ranking fail to prevent domain narrowing?

A. Because, after pure phonotactic learning is over, during the acquisition of alternations, an Anti-Alternation Bias (●§34ii, ▶) takes precedence over the Subset Principle, and so the M≫F ranking bias ceases to hold:

⇒ a learner who has only encountered preconsonantal and prepausal tokens of *sing*, i.e. *[sŋ]*, and who consequently assigns to it the word-level representation */WL. sVŋ/,* will avoid the unfaithful mapping */Wl. sVŋ/ + */Wl. n/ → */P. sVŋ.gt/* since it generates a novel alternant *[sŋ]* that she has not encountered before:

in consequence, she will demote *[ŋ] below DEP-[ŋ] in the phrase-level hierarchy.

Unlike implementations in OO-correspondence (McCarthy 1998; Hayes 2004; Tessier 2006, 2016; Do 2013, 2018), this approach to the Anti-Alternation Bias does not incorrectly predict that innovative sound changes will show cyclic misapplication effects from the outset: cf. §11.

§24 Morphologization and lexicalization

The story as told by Anderson (1988: 324-336)

• Proto-Germanic:

<table>
<thead>
<tr>
<th>nom./acc.</th>
<th>gen.</th>
<th>dat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamb-iz</td>
<td>lamb-iz-ō</td>
<td>lamb-iz-ai</td>
</tr>
<tr>
<td>lamb-iz-ō</td>
<td>lamb-iz-aaz</td>
<td>lamb-iz-om</td>
</tr>
<tr>
<td>lamb-iz-omoz</td>
<td>lamb-iz-ai</td>
<td>lamb-iz-um</td>
</tr>
</tbody>
</table>

• Pre-Old High German:

As a result of various changes (including rhotacism), the paradigm below results.

At this stage, the relevant nouns take the ending */-ir-/ throughout the paradigm, but a set of phonological rules deletes */-ir-/ in a non-initial syllable word-finally:

phonological rule(s): ir → Ø / σ₁ #

§25 Morphologization as a rule of exponence: the development of Germanic s-stems in Old High German

The story as told by Anderson (1988: 324-336)

- Proto-Germanic:

<table>
<thead>
<tr>
<th>nom./acc.</th>
<th>pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamb-iz</td>
<td>lamb-iz-ō</td>
</tr>
<tr>
<td>lamb-iz-ō</td>
<td>lamb-iz-aaz</td>
</tr>
<tr>
<td>lamb-iz-omoz</td>
<td>lamb-iz-ai</td>
</tr>
</tbody>
</table>

- Pre-Old High German:

 As a result of various changes (including rhotacism), the paradigm below results.

At this stage, the relevant nouns take the ending */-ir-/ throughout the paradigm, but a set of phonological rules deletes */-ir-/ in a non-initial syllable word-finally:

phonological rule(s): ir → Ø / σ₁ #

- nom./acc. | pl.
- lamb | lamb-ir-ō
- lamb-ir-ō | lamb-ir-um
• Early Old High German:
A further rule is added to the grammar, deleting final short /u/. This causes the rule deleting word-final /-ir/ to become opaque, as there is word-final [-ir-] on the surface in the nom./acc. pl.

As a consequence, the behaviour of /-ir-/ is reanalysed: instead of being deleted in a phonological context, viz. word-finally, it is analyzed as being inserted in a morphological context, viz. in oblique (cases other than nom. and acc.) or plural forms.

morphological rule:
\[\emptyset \rightarrow \text{-ir-} / \text{Stem}[^{+\text{class}}] \]
[\{[^{+\text{oblique}}] \}] [\{[^{+\text{plural}}] \}]

• Later Old High German:
Morphologization is confirmed by the fact /-ir-/ insertion is now reduced to a subset of morphological environments, viz. in the plural:

| | sg. | pl.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nom./acc.</td>
<td>lamb</td>
<td>lamb-ir</td>
</tr>
<tr>
<td>gen.</td>
<td>lamb-ir-as</td>
<td>lamb-ir-o</td>
</tr>
<tr>
<td>dat.</td>
<td>lamb-ir-a</td>
<td>lamb-ir-um</td>
</tr>
</tbody>
</table>

morphological rule:
\[\emptyset \rightarrow \text{-ir-} / \text{Stem}[^{+\text{class}}] \] [^{+\text{plural}}]

§27 Lexicalization as a via-rule: umlaut plurals in English

In pre-Old English, umlauted plurals were the result of a phonological rule:

\[\alph:\rightarrow \text{C}_0 \text{i} / \text{C}_1 \text{a} \text{i} \]

UR /foot/ /foot-iz/
SR [foot] [foot-iz]
‘foot’ ‘feet’

In present-day English, they are undoubtedly stored irregular forms, at best linked by a via-rule:

\[[\text{NG} \ldots \text{V}[^{+\text{hi},^{+\text{bk}}}] \text{C}_1] \rightarrow [\text{NG} \ldots \text{C}_1] \]

foot feet
goose geese
tooth teeth

In pre-Old English, umlauted plurals were the result of a phonological rule:

\[\alph:\rightarrow \text{C}_0 \text{i} / \text{C}_1 \text{a} \text{i} \]

UR /foot/ /foot-iz/
SR [foot] [foot-iz]
‘foot’ ‘feet’

In present-day English, they are undoubtedly stored irregular forms, at best linked by a via-rule:

\[[\text{NG} \ldots \text{V}[^{+\text{hi},^{+\text{bk}}}] \text{C}_1] \rightarrow [\text{NG} \ldots \text{C}_1] \]

foot feet
goose geese
tooth teeth
§30 Mild high, drastic low: liquid lenition in English

In a long-term lenition trajectory, the milder, older process ↔ synchronically higher stratum (narrower domain) more drastic, younger process ↔ synchronically lower stratum (wider domain).

E.g. (i) /l/-lenition trajectory

\[
\begin{align*}
 \bar{1} & \overset{\text{lenition}}{\rightarrow} \bar{4} & \overset{\text{deletion}}{\rightarrow} \varnothing \\
 \text{/l/-lenition is older than /l/-deletion.}
\end{align*}
\]

(ii) /v/-lenition trajectory:

\[
\begin{align*}
 \bar{1} & \overset{\text{darkening}}{\rightarrow} \bar{1} & \overset{\text{vocalization}}{\rightarrow} \varnothing (\overset{\text{deletion}}{\rightarrow} \varnothing) \\
 \text{/v/-darkening is older than /v/-vocalization.}
\end{align*}
\]

\[
\begin{align*}
 /l/-lenition, /v/-darkening: \text{older} & \Rightarrow \text{higher stratum (narrower domain)} \\
 /l/-deletion, /v/-vocalization: \text{younger} & \Rightarrow \text{lower stratum (wider domain)}
\end{align*}
\]

§31 Word-level processes (overapply to word-final prevocalic Cs):

\[
\begin{align*}
 /l/-lenition & \text{does apply in car alarm} \\
 /v/-darkening & \text{does apply in sea lilt}
\end{align*}
\]

Phrase-level processes (do not overapply to word-final prevocalic Cs):

\[
\begin{align*}
 /l/-deletion & \text{does not apply in car alarm} \\
 /v/-vocalization & \text{does not apply in sea lilt}
\end{align*}
\]

§32 RULE SCATTERING (after Robinson 1976):

Diachronic change often introduces a new avatar of an existing pattern into a higher component of the grammar by reanalysis, while the old avatar remains in situ.

Rule scattering at the phonology-phonetics interface

§33 A perfectly ordinary stage of affairs: two cognate rules, one gradient, one categorical, representing different stages in the diachronic life cycle of the same sound pattern, coexist within the same grammar.

Examples: • Philadelphia **æ**-tensing (Labov 1994) §35-§36 below
 • Pre-yod /s/-palatalization (Zsiga 1995) §37-§39 below

§34 Why is this stage of affairs common? Presumably because of the mechanics of stabilization (i.e. of the diachronic process of reanalysis whereby tokens of a gradient rule of phonetic implementation are reinterpreted as involving a categorical distinction): the reanalysed tokens give rise to a new categorical rule, whilst the nonreanalysed tokens preserve the gradient rule in situ (Bermúdez-Otero 2015: 387-388).

§35 Philadelphia **æ**-tensing: a categorical default stem-level rule...

• categorical opposition between lax [æ] and tense [æː]
 • the phonetic realizations of [æ] and [æː] occupy largely nonoverlapping regions in auditory space (Labov 1989: 8-10)
 • default pattern: **æ** is normally tense before coda /m, n, f, θ, s/ (Labov 1994: 430)
 • counterbalanced by resyllabification before word-level suffixes:
 e.g. m[æ]n, m[æ]nner, m[æː]nn-ing (Labov 1994; 430-31)
 • outright lexical exceptions: [æː] in mad, bad, glad; but [æ] in sad, sad, lad
 • [æ] in strong verbs like began, ran, swam

§36 …overlaid with a gradient phonetic process

the precise formant values of the acoustic realization of [æː] are exquisitely sensitive to the phonetic environment
§37 Pre-yod /s/-palatalization: A neutralizing stem-level morphophonological process…

\[
\text{confi[s]/j/on} \rightarrow \text{confi[ʃ]on}
\]

§38 …coexisting with gradient gestural overlap across word-boundaries

\[
\text{pres/} \# /j/\text{on} \rightarrow \text{pre[ʃ]on}
\]

§39 But the same diachronic origin! Cf. Chaucer’s confe\(\text{si}\text{.uːn}\)/.

§40 The rule systems created by scattering exhibit phonetic gradience and morphological sensitivity in the same grammar without violating modularity (cf. §11 above):

- the old phonetic process exhibits gradience;
- the new categorical process exhibits morphological sensitivity.

E.g. /s/-reduction in New York Spanish (Erker 2012)

\[
\begin{align*}
\text{(i) categorical [s]-absence} & \rightarrow \text{sensitive to morphemic status (e.g. inflectional or not)} \\
\text{(ii) gradient reduction of [s]-duration} & \rightarrow \text{insensitive to morphology}
\end{align*}
\]

Rule scattering at the morphology-phonology interface

§41 The effect of contextual factors upon phonological variation decreases in magnitude for high-frequency, apparently exceptional items:

E.g. final /t,d/-deletion in New Zealand English

<table>
<thead>
<tr>
<th>Context</th>
<th>Other Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>88%</td>
</tr>
<tr>
<td>V</td>
<td>75%</td>
</tr>
<tr>
<td>Range</td>
<td>13%</td>
</tr>
</tbody>
</table>

Small contextual effect

Big contextual effect

§42 Guy’s explanation: variable allomorphy + variable phonology

- AND has two allomorphs: and and an‘; other words have a single UR.
- Selection of an‘ pre-empts variable /t,d/-deletion, and so attenuates the effect of factors governing the phonological process.

See also Mackenzie (2013) on English auxiliaries.

Again, this is outcome of diachronic rule scattering: the allomorphic pattern and the variable phonological rule have the same historical origin. The resulting two-process system is modular in that the phonological rule of /t,d/-deletion is blind to lexical identity.

REFERENCES

Bermúdez-Otero, Ricardo, Maciej Baranowski, George Bailey & Danielle Turton. 2015. A constant rate effect in Manchester /t/-glottalling: high-frequency words are ahead of, but change at the same rate as, low-frequency words. Paper presented at 2nd Edinburgh Symposium on Historical Phonology, 3 December 2015.

Do, Young Ah. 2013. Biased learning of phonological alternations. Doctoral thesis, MIT.

Do, Young Ah. 2015. Paradigm uniformity bias in the learning of Korean verbal inflections. *Phonology* 35 (4), 547-575.

Turton, Danielle. 2016. Synchronic stratum-specific rates of application reflect diachronic change: morphosyntactic conditioning of variation in English /l/-darkening. Papers in Historical Phonology 1, 130-165.
